7,560 research outputs found

    Genome-wide analysis to predict protein sequence variations that change phosphorylation sites or their corresponding kinases

    Get PDF
    We define phosphovariants as genetic variations that change phosphorylation sites or their interacting kinases. Considering the essential role of phosphorylation in protein functions, it is highly likely that phosphovariants change protein functions and may constitute a proportion of the mechanisms by which genetic variations cause individual differences or diseases. We categorized phosphovariants into three subtypes and developed a system that predicts them. Our method can be used to screen important polymorphisms and help to identify the mechanisms of genetic diseases

    Diffusion Adversarial Representation Learning for Self-supervised Vessel Segmentation

    Full text link
    Vessel segmentation in medical images is one of the important tasks in the diagnosis of vascular diseases and therapy planning. Although learning-based segmentation approaches have been extensively studied, a large amount of ground-truth labels are required in supervised methods and confusing background structures make neural networks hard to segment vessels in an unsupervised manner. To address this, here we introduce a novel diffusion adversarial representation learning (DARL) model that leverages a denoising diffusion probabilistic model with adversarial learning, and apply it to vessel segmentation. In particular, for self-supervised vessel segmentation, DARL learns the background signal using a diffusion module, which lets a generation module effectively provide vessel representations. Also, by adversarial learning based on the proposed switchable spatially-adaptive denormalization, our model estimates synthetic fake vessel images as well as vessel segmentation masks, which further makes the model capture vessel-relevant semantic information. Once the proposed model is trained, the model generates segmentation masks in a single step and can be applied to general vascular structure segmentation of coronary angiography and retinal images. Experimental results on various datasets show that our method significantly outperforms existing unsupervised and self-supervised vessel segmentation methods.Comment: Accepted at ICLR 202

    ZegOT: Zero-shot Segmentation Through Optimal Transport of Text Prompts

    Full text link
    Recent success of large-scale Contrastive Language-Image Pre-training (CLIP) has led to great promise in zero-shot semantic segmentation by transferring image-text aligned knowledge to pixel-level classification. However, existing methods usually require an additional image encoder or retraining/tuning the CLIP module. Here, we propose a novel Zero-shot segmentation with Optimal Transport (ZegOT) method that matches multiple text prompts with frozen image embeddings through optimal transport. In particular, we introduce a novel Multiple Prompt Optimal Transport Solver (MPOT), which is designed to learn an optimal mapping between multiple text prompts and visual feature maps of the frozen image encoder hidden layers. This unique mapping method facilitates each of the multiple text prompts to effectively focus on distinct visual semantic attributes. Through extensive experiments on benchmark datasets, we show that our method achieves the state-of-the-art (SOTA) performance over existing Zero-shot Semantic Segmentation (ZS3) approaches.Comment: 18pages, 8 figure

    Preparation and characterization of spray-dried valsartan-loaded Eudragit® E PO solid dispersion microparticles

    Get PDF
    AbstractThe purpose of this study was to develop the immediate release stomach-specific spray-dried formulation of valsartan (VAL) using Eudragit® E PO (EPO) as the carrier for enhancing dissolution rate in a gastric environment. Enhanced solubility and dissolution in gastric pH was achieved by formulating the solid dispersion using a spray drying technique. Different combinations of drug–polymer–surfactant were dissolved in 10% ethanol solution and spray-dried in order to obtain solid dispersion microparticles. Use of the VAL–EPO solid dispersion microparticles resulted in significant improvement of the dissolution rate of the drug at pH 1.2 and pH 4.0, compared to the free drug powder and the commercial product. A hard gelatin capsule was filled with the VAL–EPO solid dispersion powder prior to the dissolution test. The increased dissolution of VAL from solid dispersion microparticles in gastric pH was attributed to the effect of EPO and most importantly the transformation of crystalline drugs to amorphous solid dispersion powder, which was clearly shown by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and powder X-ray diffraction (P-XRD) studies. Thus, VAL, a potential antihypertensive drug in the form of a solid dispersion microparticulate powder, can be effectively delivered in the immediate release dosage form for stomach-specific drug delivery

    PAGaN I: Multi-Frequency Polarimetry of AGN Jets with KVN

    Full text link
    Active Galactic Nuclei (AGN) with bright radio jets offer the opportunity to study the structure of and physical conditions in relativistic outflows. For such studies, multi-frequency polarimetric very long baseline interferometric (VLBI) observations are important as they directly probe particle densities, magnetic field geometries, and several other parameters. We present results from first-epoch data obtained by the Korean VLBI Network (KVN) within the frame of the Plasma Physics of Active Galactic Nuclei (PAGaN) project. We observed seven radio-bright nearby AGN at frequencies of 22, 43, 86, and 129 GHz in dual polarization mode. Our observations constrain apparent brightness temperatures of jet components and radio cores in our sample to >108.01>10^{8.01} K and >109.86>10^{9.86} K, respectively. Degrees of linear polarization mLm_{L} are relatively low overall: less than 10%. This indicates suppression of polarization by strong turbulence in the jets. We found an exceptionally high degree of polarization in a jet component of BL Lac at 43 GHz, with mL∼m_{L} \sim 40%. Assuming a transverse shock front propagating downstream along the jet, the shock front being almost parallel to the line of sight can explain the high degree of polarization.Comment: 14 pages, 17 figures, 4 tables. To appear in JKAS (received 2015 July 27; accepted 2015 October 25). Note the PAGaN II companion paper by J. Oh et a

    Molecular Weight Dependent Glucose Lowering Effect of Low Molecular Weight Chitosan Oligosaccharide (GO2KA1) on Postprandial Blood Glucose Level in SD Rats Model

    Get PDF
    Abstract This research investigated the effect of enzymatically digested low molecular weight (MW) chitosan oligosaccharide on type 2 diabetes prevention. Three different chitosan oligosaccharide samples with varying MW were evaluated in vitro for inhibition of rat small intestinal α-glucosidase and porcine pancreatic α-amylase (GO2KA1; \u3c1000 Da, GO2KA2; 1000–10,000 Da, GO2KA3; MW \u3e 10,000 Da). The in vitro results showed that all tested samples had similar rat α-glucosidase inhibitory and porcine α-amylase inhibitory activity. Based on these observations, we decided to further investigate the effect of all three samples at a dose of 0.1 g/kg, on reducing postprandial blood glucose levels in Sprague-Dawley (SD) rat model after sucrose loading test. In the animal trial, all tested samples had postprandial blood glucose reduction effect, when compared to control, however GO2KA1 supplementation had the strongest effect. The glucose peak (Cmax) for GO2KA1 and control was 152 mg/dL and 193 mg/dL, respectively. The area under the blood glucose-time curve (AUC) for GO2KA1 and control was 262 h mg/dL and 305 h mg/dL, respectively. Furthermore, the time of peak plasma concentration of blood glucose (Tmax) for GO2KA1 was significantly delayed (0.9 h) compared to control (0.5 h). These results suggest that GO2KA1 could have a beneficial effect for blood glucose management relevant to diabetes prevention in normal and pre-diabetic individuals. The suggested mechanism of action is via inhibition of the carbohydrate hydrolysis enzyme α-glucosidase and since GO2KA1 (MW \u3c 1000 Da) had higher in vivo effect, we hypothesize that it is more readily absorbed and might exert further biological effect once it is absorbed in the blood stream, relevant to blood glucose management
    • …
    corecore